

LA GVHD POLMONARE

Marta Stanzani, MD, PhD

Direttore Programma Trapianti Ematologia
Ospedale Ca' Foncello - ULSS 2 _ Treviso

HIGHLIGHIS IN EMATOLOGIA TREVISO, 1-2 DICEMBRE 2023

Disclosures of Name Surname

| Company name | Research
 support | Employee | Consultant | Stockholder | Speakers bureau | Advisory board |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | Other | | | | |
| :--- | :--- | :--- | :--- |
| GILEAD | | \mathbf{X} | \mathbf{X} |
| MERCK | | \mathbf{X} | |
| | | | |

AGENDA

- Pathophysiology
- Which risk factors are most important?
- Diagnostic challanges
- Therapeutic options

THE IMPORTANCE OF NON-INFECTIOUS PULMONARY COMPLICATIONS (NIPCs) FOR ALLOGENEIC HSCT

- Mortality after HSCT has declined over the last 30 years
cGVHD occurs 30-70\% of patients after HSCT.
Non-Infectious Pulmonary Complications (NIPCs) affect approximately 20% of HSCT recipients
- NIPCs increase the rate of death 2-fold

THE CONCEPT OF NIPCs

when do they occurs?		how do they affect the lung?	
EARLY first 3 months	LATE after 3 months	OBSTRUCTIVE hard to get air out	RESTRICTIVE hard to get air in
Diffuse Alveolar Hemorrhage	Organizing Pneumonia	Bronchiolitis Obliterans Syndrome (BOS)	Diffuse Alveolar Hemorrhage
Idiopathic Pneumonia Syndrome	Bronchiolitis Obliterans Syndrome (BOS)		Interstitial Pneumonia
Organizing Pneumonia			Organizing Pneumonia
Pulmonary VenoOcclusive Disease			Lymphocytic Interstitial Pneumonia
			Pluroparenchymal Fibroelastosis

NIH CLASSIFICATION SYSTEM FOR CHRONIC GVHD

Mild	- 1 or 2 organs or sites (except lung) with score 1 - Mild oral symptoms, no decrease in oral intake - Mild dry eyes, lubricant eyedrops $\leq 3 x /$ day
Moderate	- 3 or more organs with score 1 - At least 1 organ or site with score 2 - 19-50\% body surface area involved or superficial sclerosis - Moderate dry eyes, eyedrops > 3x/day or punctal plugs - Lung score 1 (FEV1 60-79\% or dyspnea with stairs)
Severe	- At least 1 organ or site with score 3 - $>50 \%$ body surface area involved - Deep sclerosis, impaired mobility or ulceration - Severe oral symptoms with major limitation in oral intake - Severe dry eyes affecting ADL - Lung score 2 (FEV1 40-59\% or dyspnea walking on flat ground)

BRONCHIOLITIS OBLITERANS SYNDROME

- Most common form of pulmonary GVHD
- Generally, develops in the first 2 years
- Occurs in:
5% of all HCT recipients within 5 years
14% of patients with GVHD
the true prevalence is probably higher
- Defined by progressive disease of small airways
- 5-year survival rate 40-60\% and 10-year survival rate 20%
- Prognosis has improved in the last two decades with better screening and recognition

RISK FACTORS FOR BOS

Risk factor	OR	$\mathbf{9 5 \%} \mathbf{C I}$	\boldsymbol{P} value
Busulfan	6.37	$[2.37,17.13]$	<0.001
ATG	0.08	$[0.02,0.27]$	<0.001
Unrelated donor	4.01	$[1.55,10.42]$	0.004
Female donor	4.20	$[1.63,10.86]$	0.003
Reduced pretransplant $\mathrm{FEV}_{1} \%$	1.04	$[1.01,1.07]$	<0.01
CMV positive	3.44	$[1.34,8.87]$	0.01
Acute GVHD	3.34	$[1.29,8.67]$	0.01
Pretransplant history of lung disease	9.99	$[1.66,59.80]$	0.01
High-risk disease	2.76	$[1.02,7.45]$	<0.05

"Listen to your patient, he is telling you the diagnosis."

Sir William Osler
(1849-1919)

SYMPTOMS

- DRY COUGH 60-100\%
- WHEEZING 40\%
- DYSPNEA 50-70\%
- ASYMPTOMATIC 20\%

Earlier diagnosis is associated with better outcomes

DIAGNOSTIC TOOLS

Modality	Description		
PULMONARY FUNCTION TESTS (PFTs)	FEV_{1}		
$\mathrm{FEV}_{1} / \mathrm{FVC}$		\quad	Air trapping
:---			
Bronchiectasis			
Rule out infections			

PULMONARY FUNCTION TESTs

CT FINDINGS

DIAGNOSIS CRITERIA

Clinical diagnosis is based on pulmonary function studies and imaging:

1. Evidence of progressive airflow obstruction:

- Fall in FEV_{1}
- Evidence of air trapping all'imaging (CT)

2. Absence of infection in the respiratory tract:

- Imaging (CT)
- Microbiological tests
- cultures
- testing for viral infections (NAAT preferred)
- sputum culture
- BAL

NIH CRITERIA FOR CLINICAL TRIALS IN CHRONIC GVHD

1) $\mathrm{FEV}_{1} / \mathrm{FVC}$ ratio <0.7 or 5 th percentile of predicted
2) $\mathrm{FEV}_{1}<75 \%$ of predicted with $\geq 10 \%$ decline over less than 2 years
3) Absence of respiratory tract infections
4) One of the 2 supporting features of BOS:

- Air trapping by expiratory CT or small airway thickening or bronchiectasis by HR CT
- Air trapping by PFTs (Residual Volume > 120% of predicted or RV/TLC elevated outside the 90% confidence interval)

If other organs are involved \Rightarrow first 3 criteria are required If no other organ are involved \Rightarrow biopsy is required

NIH GRADING FOR CLINICAL TRIALS IN LUNG CHRONIC GVHD

NO GVHD	$\mathrm{FEV}_{1} \geq 80 \%$ of predicted asymptomatic
MILD	$\mathrm{FEV}_{1} 60-79 \%$ of predicted shortness of breath after climbing one flight of steps
MODERATE	$\mathrm{FEV}_{1} 40-59 \%$ of predicted shortness of breath after walking on flat ground
SEVERE	$\mathrm{FEV}_{1} \leq 39 \%$ of predicted shortness of breath at rest - requiring O_{2}

COMPARISON BETWEEN NIH AND ISHLT CRITERIA

Table 1. Comparison of the 2014 NIH cGVHD consensus criteria, the 2019 ISHLT CLAD criteria, and the adapted criteria

Criteria	NIH criteria	ISHLT CLAD criteria	Adapted criteria
Diagnosis	FEV1/NC <0.7 or the 5th percentile predicted based on population-based reference; VC is either FVC or SVC, whichever is greater; FEV1 < 75\% predicted with $\geq 10 \%$ decrease over less than $2 y$, not corrected with albuterol	Persistent decline ($>3 \mathrm{mo}, \geq 20 \%$) of FEV1 from the reference baseline; baseline is the mean of the best 2 posttransplant FEV1 measurements taken 3 wk apart	Abnormal pulmonarv function after transplant (FEV1 < 80\% predicted based on population-based reference), able to be classified into 1 of the 4 CLAD-PcGVHD subtypes, rule out other causes of pulmonary dysfunction
Phenotype	BOS: FEV1/VC <0.7 or the 5th percentile predicted based on population-based reference; VC is either FVC or SVC, whichever is greater; evidence of air-trapping by expiratory CT or airway thickening or bronchiectasis by high-resolution CT, or air-trapping by PFT	BOS: obstruction (FEV1/FVC < 0.7), without restriction or CT opacity; RAS: restriction (TLC $<90 \%$ baseline) + CT opacity, FEV1/FVC ≥ 0.7; mixed: FEV1/FVC < 0.7, TLC < 90\% baseline, with CT opacity; undefined: A. FEV1/FVC < 0.7, TLC < 90\% baseline, NO CT opacity; B. FEV1/FVC <0.7, TLC $\geq 90 \%$ baseline, WITH CT opacity	Obstruction: obstruction (FEV1/FVC <0.7), without restrictive findings on PFT or CT; restriction: restriction (TLC $<\mathbf{9 0 \%}$ predicted), with restrictive CT findings,* FEV1/ FVC ≥ 0.7; mixed: $\operatorname{FEV} 1 / \mathrm{FVC}<0.7$, TLC $<90 \%$ predicted, restrictive CT findings; undefined: A. FEV1/FVC <0.7, TLC < 90\% predicted, NO restrictive CT findings; B. FEV1/FVC <0.7, TLC $\geq 90 \%$ predicted, WITH restrictive CT findings

RAS, restrictive allograft syndrome.
*Restrictive CT scan findings include ground glass opacities, parenchymal consolidation, traction bronchiectasis, lobar volume loss, usual interstitial pneumonitis pattern, and pleural abnormalities.

ADAPTED CRITERIA

- Increased risk of death compared to non-GVHD patients (HR 1.88; $\mathrm{p}=0.006$)
- Same risk of death compared to NIH GVHD patients ($p=0.678$)

DIAGNOSTIC CHALLENGES

Early diagnosis is associated with better outcomes

Why can't we diagnose BOS consistently earlier?

1. Symptoms appear when the disease is advanced
2. Symptoms are subtle and hard to distinguish from other post-HCT problems (COPD, fibrosis)
3. Lack of serial PFTs at well-defined intervals (occurs every few months, while BOS can occur within a few weeks)
4. It does not show up on chest imaging until it is very severe
5. Consider pre-existing Iung disease

RESPONSE TO DIAGNOSTIC PROBLEMS

PFTs are recommended:

- baseline, d +100, each 3 months in the first year post-allo
- at cGVHD diagnosis
- each 3 months thereafter cGVHD diagnosis

Monitoring for FEV_{1} trajectory decline:

- FEV_{1} decline $>10 \%$ from baseline
- FEV_{1} decline $>5 \% /$ year

Assessment of the $\mathrm{FEF}_{25-75 \text { : }}$

- decline >25\% pre-HCT baseline (prediction 85\%; NPV 98\%)
- more representative of small airways function
- usually deteriorate before FEV $_{1}$ (early stage)
FEV_{1} can be altered by other causes:
- infections
- deterioration of the general conditions
- technical issues or noise

RESTRICTIVE PULMONARY CHRONIC GVHD

- Not «officially» recognized as part of pulmonary cGVHD.
- Prevalence unknown (3-year cumulative incidence 5\%).
- CT imaging can be useful:
bilateral interstitial lung disease ground-glass, consolidations
pleural attraction and thickening
bronchiectasis
- PFTs are useful (DLCO)
- Can be seen after:
drug exposure
radiation
HD chemotherapy

OUTCOMES ACCORDING TO THE TYPE OF DIGNOSIS: BOS vs. ILD

TREATMENT

Optimise immunosuppression/ AUC monitoring

Rule out/treat associated ACR and

Treat infections
Treat contributing factors (GERD, etc.) Supportive measures

Stem cell graft engineering

- Anti-thymocyte globulin
- Post-transplant cyclophosphamide - CD34 selection
- Ex vivo pan-T cell depletion
- Ex vivo pan-T cell depletion
- Donor IL-2 therapy

Optimise immunosuppression/ AUC monitoring
Treat infections
Manage extrapulmonary GVHD
Treat contributing factors
Supportive measures
(pulmonary rehabilitation, etc.)

B cell depletion in vivo
 - rituximab
 - ofatumumab
 - obinutuzumab

Adoptive Treg Therapy - Purified donor Treg

- Ex vivo expanded Treg
- Antigen-specific Treg

Treg-sparing therapy

 - sirolimus- mycophenolate mofetil
- ruxolitinib
- bortezomib

In vivo Treg expansion

- low-dose IL-2

STUDIES ON BOS THERAPY

Author	Study type	Intervention	Size	Response definition	Response
Child 1999	retrospective	ECP	5	PFTs	40\%
Khalid 2005	prospective	Azithromycin	8	symptomatic and PFTs	87\%
Ratejan 2005	retrospective	HD steroids	9	-	CR=20\%; PR=30\%
Zaja 2007	retrospective	Rituximab	9	$C R=100 \%$ resolution; $\mathrm{PR}=50 \%$ improved	$C R=0 ; P R=37 \%$
Kim 2010	prospective, open label, phase II	Rituximab	11	$C R=100 \%$ resolution; $P R=$ clinical score	$C R=0 ; P R=9 \%$
Ueda 2010	retrospective	Steroids	44	symptomatic and radiologic	?
Lucid 2011	retrospective	ECP	9	symptomatic and PFTs	67\%
Lam 2011	prospective, randomized, DB , placebo-controlled	Azithromycin	12	symptomatic and PFTs	0
Norman 2011	retrospective	FAM+steroids	9	symptomatic, PFTs, lung function score	0
Yanik 2012	prospective, open label	Etanercept	22	PFTs	32\%
Del Fante 2016	retrospective	ECP	20	symptomatic and PFTs	76\%
Williams 2016	prospective, open label, single-arm	FAM	36	PFTs	94\% \rightarrow 64\%

RUXOLITINIB FOR CHRONIC PULMONARY GVHD

Author	Trial design	Treatment	Lung response	Sample size
Redondo, 2022	Retrospective	RUXO+CS	ORR 33\%	48
Zeiser, 2021	Open-label, randomized, multicenter, Phase III	RUXO+CS vs BAT+CS	ORR 9\%	329
Wel, 2021	Retrospective	RUXO+CS	ORR 44\%	32
Moiseev, 2020	Prospective	RUXO+CS vs other IS	No response	43
Gomez, 2020	Retrospective, multicenter	RUXO+CS	ORR 61.5\%	27
Modi, 2019	Retrospective	RUXO+CS vs other IS	$12-m o$ ORR 10\%	46

ROCK2 INHIBITORS

THE ROLES OF ROCK2 IN PULMONARY cGVHD

- Controls the balance between proinflammatory and Treg
- Regulates cytoskeletal dynamics
- Regulates profibrotic gene expression
- Drives chronic inflammation
- Enhances fibrosis in cGVHD.

EXTRACORPOREAL PHOTOAPHERESI

Table 3
PFT Data for the ECP and Non-ECP-Treated Groups before and after PSM

	Unmatched Cohort			Matched Cohort		
	$\begin{aligned} & \text { ECP } \\ & (n=28) \end{aligned}$	$\begin{aligned} & \text { No ECP } \\ & (\mathrm{n}=46) \end{aligned}$	P	$\begin{aligned} & \text { ECP } \\ & (n=26) \end{aligned}$	$\begin{aligned} & \text { No ECP } \\ & (\mathrm{n}=26) \end{aligned}$	P
PFT data before HCT						
$\mathrm{FEV}_{19 \mathrm{P}}$	86 (64-109)	96 (68-124)	. 05	87 (64-109)	91 (68-110)	. 72
$\mathrm{FEV}_{1} / \mathrm{FVC}$ ratio	. 7 (.6-.9)	. 7 (.6-.9)	. 76	. 7 (.6-.9)	. 7 (.6-.9)	. 49
DLCopp	84 (55-106)	82 (55-116)	. 91	84 (55-106)	81 (55-116)	1.0
PFT data at BOS diagnosis						
$\mathrm{FEV}_{1 \text { 1pp }}$	56 (23-74)	63 (16-74)	. 22	56 (23-74)	54 (16-74)	. 87
$\mathrm{FEV}_{1} / \mathrm{FVC}$ ratio	. 6 (.3-7)	. 6 (.4-.7)	. 40	. 7 (.3-.7)	. 6 (.4-.7)	. 37
DLCopp	63 (42-102)	66 (38-113)	. 24	63 (42-78)	67 (38-96)	. 18
PFT data at ECP/index date						
$\mathrm{FEV}_{1 \mathrm{pp}}$	42 (20-79)	64 (14-94)	. 001	43 (23-79)	52 (14-94)	. 20
$\mathrm{FEV}_{1} / \mathrm{FVC}$ ratio	. 6 (.3-.8)	. 6 (.3-.9)	. 22	. 6 (.3-.8)	. 5 (.3-.9)	. 86
DLCOPP	60 (43-84)	65 (20-113)	. 03	60 (46-84)	61 (20-96)	. 40
PFT data at last follow-up						
$\mathrm{FEV}_{1 \mathrm{pp}}$	40 (14-74)	54 (10-94)	. 007	43 (17-74)	46 (10-86)	. 43
$\mathrm{FEV}_{1} / \mathrm{FVC}$ ratio	. 5 (.3-.8)	. 6 (.3-.9)	. 17	. 5 (.3-.8)	. 5 (.3-.9)	. 74
DL ${ }_{\text {copp }}$	53 (27-75)	62 (29-96)	. 05	48 (27-75)	62 (29-95)	. 08
Rate of decline in $\mathrm{FEV}_{1 \text { 1pp }}$ per month						
Before ECP/index date	-4.5 (-16 to .5)	-3.1 (-15 to -.7)	.83*	-4.5 (-16 to .5)	-3.6 (-15 to -.7)	.33*
After ECP/index date	-. 3 (-7.5 to 1.3)	. 0 (-3.1 to 19)		-. 2 (-2.3 to 1.3)	-. 5 (-2.5 to 3)	

* Wilcoxon signed-rank test for comparison of paired data (before and after ECP/index date) between ECP and non-ECP groups

EXTRACORPOREAL PHOTOAPHERESI

Figure 2. Kaplan-Meier survival curves for the matched ECP and non-ECPtreated patients.

NEW TARGET: AEROSOLISED LIPOSOMIAL CYCLOSPORINE

TABLE 2 Clinical trials with aerosolised liposomal cyclosporine

| Study | Clinical trial
 registration
 number | Phase |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Design (n)

BOS: bronchiolitis obliterans syndrome; LTx: lung transplantation; LCsA: aerosolised liposomal cyclosporine; SOC: standard of care; OLE: open-label extension; PFS: progression-free survival; FEV $_{1}$: forced expiratory volume in 1 s ; HSCT: haematopoietic stem cell transplant.

NEW TARGET: ANTIFIBROTIC TREATMENT

TABLE 3 Clinical trials with antifibrotic treatments

Clinical trial registration number (name)	Patients (target n)	Phase	Design	Treatments	Primary end-point	Completion date
Nintedanib						
NCT03805477	$\begin{aligned} & \text { BOS after } \\ & \text { HSCT (40) } \end{aligned}$	11	Open-label	Nintedanib 150 mg twice daily	Adverse events leading to treatment interruption or discontinuation	Feb 2021
NCT03283007 (INFINITY study)	Grade 1-2 BOS after LTX (80)	III	Randomised, quadruple-blind	Nintedanib 150 mg twice daily versus placebo	Reduction in the rate of FEV_{1} decline from baseline to month 6	Jun 2023
Pirfenidone						
NCT03315741	BOS after HSCT (30)	1	Open-label	Pirfenidone $\leqslant 2403 \mathrm{mg} \cdot \mathrm{day}^{-1}$	Number of patients requiring a dose reduction for >21 days due to adverse events	Feb 2022
NCT03473340 (STOP-CLAD)	CLAD after LTx (60)	11	Randomised, double-blind	$\begin{aligned} & \text { Pirfenidone } 801- \\ & 2403 \mathrm{mg} \cdot \text { day }^{-1} \\ & \text { versus placebo } \end{aligned}$	Per cent change in functional small airways disease as measured by parametric response mapping (HRCT) at week 24	Mar 2022
NCT02262299 (EPOS)	Grade 1-3 BOS after LTX (90)	II/III	Randomised, double-blind	$\begin{aligned} & \text { Pirfenidone } 801- \\ & 2403 \mathrm{mg} \cdot \text { day } \\ & \\ & \text { versus placebo } \end{aligned}$	Change in FEV_{1} decline from baseline to month 6	Dec 2019

[^0]
WHAT IS PULMONARY REHABILITATION?

- Comprehensive, multimodal rehab approach intended to:
- Improve aerobic conditioning
- Improve muscle strength and balance
- Teach patients how to lessen symptoms of shortness of breath
- Individually tailored progression plan (like a personal trainer!)
- Requires 2-3 sessions per week, usually 60-90 minutes in length for 2-6 months
- In one study, 10/11 patients with BOS who completed pulmonary rehabilitation walked an average of 307 feet longer in 6 minute walk testing, had less shortness of breath and better perceived physical function

HIGHLIGHITS IN EMATOLOGIA
TREVISO, 1-2 DICEMBRE 2023

LUNG TRANSPLANTATION FOR LUNG GVHD

Figure 1: Survival by indication

CF = cystic fibrosis, COPD = chronic obstructive pulmonary disease, GVHD = graft-versus-host disease, PHTN = pulmonary hypertension

Underlying disease
\rightarrow COPD
$\rightarrow \mathrm{CF}$
$-\square$ Bronchiectasis
$-\square$ PHTN
\rightarrow GVHD

+ Pulmonary fibrosis-censored
+ COPD-censored
+ CF-censored
+ Bronchiectasis-censored
+ PHTN-censored
+ GVHD-censored

Author	Study type	Size	Outcome	
Koeneck 2010	multicenter	13	5-year OS 63\%	
Chen 2011	retrospective	${ }^{19}$		
$\begin{aligned} & \text { Yousef } \\ & 2012 \end{aligned}$	multicenter			
$\begin{aligned} & \text { Holm } \\ & 2013 \end{aligned}$	- ${ }^{\text {cosear OS } 75 \%}$			
$\begin{aligned} & \text { Cheng } \\ & 2016 \end{aligned}$	retrospe		9	$\begin{aligned} & 1 \text {-year OS 89\% } \\ & 5 \text {-year OS 37\% } \end{aligned}$
$\begin{aligned} & \text { Yung } \\ & 2016 \end{aligned}$		9	1-year OS 68%	
$\begin{aligned} & \text { Gao } \\ & 2017 \end{aligned}$		6	OS 100\%	
$\begin{aligned} & \text { Chen-Yoshika' } \\ & 2018 \end{aligned}$	alticenter	62	1-year OS 85\% 5 -year OS 64\%	
$\begin{aligned} & \text { Greer } \\ & 2018 \end{aligned}$	multicenter	105	$\begin{aligned} & 1 \text {-year OS } 85 \% \\ & 5 \text {-year OS } 67 \% \end{aligned}$	
Kilman 2019	multicenter	18	5 -year OS 80%	
Shitenber 2023	singlecenter	15	1-year OS 80\%	

MANAGEMENT OF PULMONARY CHRONIC GVHD

TAKE HOME MESSAGES

- Polmonary cGVHD shows a 10 -year survival <20\%.
- Early diagnosis is associated to better outcome.
- Periodic surveillance with PFTs is reccomanded.
- Consider all therapeutic options.
- Patients who undergo to lung transplant for cGVHD have similar survival to lung transplant recipient for other indications.

Acknowledgements
 PROGRAMMA TRAPIANTI

Unità Clinica
Unità Raccolta Midollo
Gabriella De Cicco
Dario Schiavo
Umberto Pizzano
Ivano Seccafien

Direttore Scientifico
Damiano Rondelli
Direttore Ematologia
Filippo Gherlinzoni

Unità di Aferesi
Donatella Sartor
Unità di Processazione
Debora Lorenzon
Laboratorio HLA
Elisabetta Durante
Direttore Medicina Trasfusionale Arianna Veronesi

ASSOCIAZIONE ITALIANA
CONTRO LEUCEMIE
CONTRO LEUCEMIE
UNFOMI EMIELOMA

HOW DOES THE LUNG WORK?

- Breath is initiated by diaphragm contraction that expands the thoracic cavity.
- The lung passively expands and inflates with air because the pressure inside is lower than outside.
- This continues until these pressures equalize at full inspiration.

- Air enters the airways and eventually into the alveoli.
- Oxygen diffuses into the blood while carbon dioxide diffuses out of the alveoli.
- Finally, the blood is oxygenated and carbon dioxide is removed.

Nonclassical manifestations of acute GVHD

Emerging evidence indicates that acute GVHD can target non-classical organs

TREATMENT

Treatment type	Bronchiolitis Obliterans Syndrome	Restrictive Pulmonary cGVHD
PREEMPTIVE	compliance with IS	compliance with IS anti-infective No azithromicyn
	anti-infective	
vaccinations		
IVIG prevention	vaccinations	
IVIG prevention		

TREATMENT

Treatment type Bronchiolitis Obliterans Syndrome
 Restrictive Pulmonary cGVHD

INHALED steroind \pm long-acting $\boldsymbol{\beta}$ agonist steroind \pm long-acting $\boldsymbol{\beta}$ agonist

TREATMENT

Treatment type	Bronchiolitis Obliterans Syndrome	Restrictive Pulmonary cGVHD
SYSTEMIC	pulse corticosteroids (FIRST LINE) azithromycin + montelukast ruxolitinib ibrutinib/imatinib belumosudil rituximab calcineurin inhibitor mycophenolate mofetil	pulse corticosteroids (FIRST LINE) azithromycin + montelukast antibiotic agents

TREATMENT

Treatment type
 Bronchiolitis Obliterans Syndrome
 Restrictive Pulmonary cGVHD

TREATMENT

1. The mainstay of BOS treatment is systemic immunosuppression and inhaled corticosteroids
2. No accepted gold-standard therapy, but, historically, we used FAM + systemic steroids:

- $\mathbf{F} \rightarrow$ Fluticasone
- $\quad \mathbf{A} \rightarrow$ Azithromycin
- $\quad \mathbf{M} \rightarrow$ Montelukast

3. No recommendation for preemptive therapy with azithromycin:

- interference with anti-tumor immune surveillance \Rightarrow relapse and new neoplasm risk
(FDA black box warning and the cessation of azithromycin for BOS at many institutions)

4. Second-line therapies (e.g. ruxolitinib, belumosudil) generally do not work as well for lung GVHD as for other types of GVHD
5. ECP showed an ORR $<30 \%$ and it is used in combo
6. Consider pulmonary rehabilitation

TREATMENT

Treatment type	Bronchiolitis Obliterans Syndrome	Restrictive Pulmonary cGVHD
PREEMPTIVE No azithromicyn	compliance with IS anti-infective vaccinations IVIG prevention	compliance with IS anti-infective vaccinations IVIG prevention
INHALED	steroind \pm long-acting $\boldsymbol{\beta}$ agonist	steroind \pm long-acting $\boldsymbol{\beta}$ agonist
SYSTEMIC	pulse corticosteroids (FIRST LINE) azithromycin + montelukast ruxolitinib ibrutinib/imatinib belumosudil rituximab calcineurin inhibitor mycophenolate mofetil	pulse corticosteroids (FIRST LINE) azithromycin + montelukast antibiotic agents
OTHER	ECP lung transplantation	lung transplantation SYMPTOMATICoxygen therapy rehabilitation

[^0]: BOS: bronchiolitis obliterans syndrome; HSCT: haematopoietic stem cell transplant; LTx: lung transplantation; FEV $_{1}$: forced expiratory volume in 1 s ; CLAD: chronic lung allograft dysfunction; HRCT: high-resolution computed tomography

